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Glue and the QCD Lagrangian:

• Gluons

➡ Mediators of the strong interaction

➡ Determine essential features of QCD

‣ Asymptotic freedom from gluon loops 

➡ Dominate structure of  QCD vacuum (χSB)

➡ Quenched LQCD gets hadron masses correct to ~ 10%

• >98% of all visible mass due to “emergent” phenomena not 
evident from Lagrangian

- χSB  & Colour Confinement

Action (~energy) density 
fluctuations of gluon-fields 
in QCD vacuum  (2.4 
×2.4× 3.6 fm) (Derek 
Leinweber)

LQCD = q̄(iγµ∂µ −m)q − g(q̄γµTaq)Aa
µ −

1
4
Ga

µνGµν
a

2

What do we know about gluons?
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Glue and the Lagrangian
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• Hard to “see” glue in the low-energy world
➡ Gluon degrees of freedom “missing” in hadronic spectrum 

➡ Constituent Quark Picture?

• From DIS:
➡ Drive the structure of baryonic matter already at medium-x 

• Crucial players at RHIC and the LHC
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• Hard to “see” glue in the low-energy world
➡ Gluon degrees of freedom “missing” in hadronic spectrum 

➡ Constituent Quark Picture?

• From DIS:
➡ Drive the structure of baryonic matter already at medium-x 

• Crucial players at RHIC and the LHC

Glue and the Lagrangian
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• What is the spatial and momentum distribution of gluons in nuclei/nucleons?

• What are the properties of high-density gluon matter?

• How do quarks and gluons interact as they traverse matter?

• What role do the gluons play in the spin structure of the nucleon?

6

• Hard to “see” glue in the low-energy world
➡ Gluon degrees of freedom “missing” in hadronic spectrum 

➡ Constituent Quark Picture?

• From DIS:
➡ Drive the structure of baryonic matter already at medium-x 

• Crucial players at RHIC and the LHC

 

sD
0D

sD
D

0K K

–K
uc

sc
dc

cdcu
cs

D

K 0

usds

su sd
du

0D

c

0

ud

Glue and the Lagrangian



Matt Lamont - EINN ’09: macl@bnl.gov

• What is the spatial and momentum distribution of gluons in nuclei/nucleons?

• What are the properties of high-density gluon matter?

• How do quarks and gluons interact as they traverse matter?

• What role do the gluons play in the spin structure of the nucleon?

6

• Hard to “see” glue in the low-energy world
➡ Gluon degrees of freedom “missing” in hadronic spectrum 

➡ Constituent Quark Picture?

• From DIS:
➡ Drive the structure of baryonic matter already at medium-x 

• Crucial players at RHIC and the LHC

How do we get to the answers?
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• Both e+A and p+A provide excellent 
information on properties of gluons in 
the nuclear wave functions

• Both are complementary and offer the 
opportunity to perform stringent checks 
of factorization/universality ⇒

• But:
➡ soft colour interactions between p and A 

before and after the primary interaction

F. Schilling, hep-ex/0209001

Breakdown of factorization (e+p 
HERA versus p+p Tevatron) seen 

for diffractive final states.

Accessing the Glue - p+A vs e+A
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Scaling violation: dF2 
/dlnQ2 and linear DGLAP 
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Scaling violation: dF2 
/dlnQ2 and linear DGLAP 

Evolution ⇒ G(x,Q2)
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• Using the Linear DGLAP evolution model:

➡ Weird behaviour of xG at low-x and low 
Q2 in HERA data

‣ xS > xG, though sea quarks come from 
gluon splitting ...
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9

What’s the underlying dynamics?
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Non-linear QCD - Saturation

10

proton

N partons new partons emitted as energy increases
could be emitted off any of the N partons
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Non-linear QCD - Saturation

• BFKL: evolution in x

➡ linear

‣ explosion in colour field at low-x

• Non-linear BK/JIMWLK equations

➡ non-linearity ⇒ saturation

➡ characterised by the saturation 
scale, QS(x,A)

➡ arises naturally in the Colour 
Glass Condensate (CGC) EFT

10

proton

N partons any 2 partons can recombine into one

Regimes of QCD Wave Function
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The Nuclear Enhancement Factor

11

• Enhancing Saturation effects:

➡ Probes interact over distances L ~ (2mnx)-1

➡ For probes where L > 2RA (~ A1/3), cannot 
distinguish between nucleons in the front or 
back of of of the nucleus.

‣Probe interacts coherently with all nucleons.

➡ Probes with transverse resolution 1/Q2 (<< 
Λ2QCD) ~ 1 fm2 will see large colour charge 
fluctuations.

‣This kick experienced in a random walk is 
the resolution scale.

R ~ A
1/3
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The Nuclear Enhancement Factor
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Simple geometric considerations lead to:

Nuclear Enhancement Factor:

Enhancement of QS with A: ⇒ non-linear QCD regime 
                                                  reached at significantly lower 
                                                  energy in e+A than in e+p

(QA
s )2 ≈ c Q2

0

�
A

x

�1/3

Q2
s ∝

αsxG(x, Q2
s)

πR2
A

HERA : xG ∝ 1

x1/3
A dependence : xGA ∝ A
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The Nuclear “Oomph Factor”

13

e.g. Kowalski, Lappi and Venugopalan, 
PRL 100, 022303 (2008); Armesto et 
al., PRL 94:022002; Kowalski, Teaney, 
PRD 68:114005

More sophisticated analyses 
⇒ confirm (exceed) pocket 
formula for high A
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The Nuclear “Oomph Factor”

13

One would require an energy in e+p 
~ 10-100 x e+A to get to same Q2S

e.g. Kowalski, Lappi and Venugopalan, 
PRL 100, 022303 (2008); Armesto et 
al., PRL 94:022002; Kowalski, Teaney, 
PRD 68:114005

More sophisticated analyses 
⇒ confirm (exceed) pocket 
formula for high A
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Key Measurements in e+A
• Momentum distribution of gluons G(x,Q2)

➡ Extract via scaling violation in F2: δF2/δlnQ2

➡ Direct measurement: FL ~ xG(x,Q2) (requires √s scan)
➡ 2+1 jet rates 
➡ Inelastic vector meson production (e.g. J/ψ)
➡ Diffractive vector meson production ~ [xG(x,Q2)]2

14
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Example of Key Measurements: FL

HKM and FGS are "standard" 
shadowing parameterizations that are 
evolved with DGLAP

FL ~ αs xG(x,Q2)
requires √s scan, Q2/xs = y

Here: 
∫Ldt = 4/A fb-1  (10+100) GeV
    = 4/A fb-1  (10+50) GeV
    = 2/A fb-1  (5+50) GeV

statistical error only

Syst. studies of FL(A,x,Q2): 
• xG(x,Q2) with great precision 
• Distinguish between models

x

G
P

b(
x)

/G
d(

x)

Statistical errors for

∫Ldt = 10 fb-1 ≈ 2 year running

〈Q2〉: 1.3 2.4 3.8 5.7 9.5 17 34 89

Color G
lass CondensateHKM

FGS

RHICLHC

10-110-210-3
0.2

0.4

0.6

0.8

1

1.2

15

d2σep→eX

dxdQ2
=

4πα2
e.m.

xQ4
[(1− y +

y2

2
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2
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Key Measurements in e+A
• Momentum distribution of gluons G(x,Q2)

➡ Extract via scaling violation in F2: δF2/δlnQ2

➡ Direct measurement: FL ~ xG(x,Q2) (requires √s scan)
➡ 2+1 jet rates 
➡ Inelastic vector meson production (e.g. J/ψ)
➡ Diffractive vector meson production ~ [xG(x,Q2)]2

• Space-time distributions of gluons in matter
➡ Exclusive final states (e.g. vector meson production ρ, J/ψ)
➡ Deep Virtual Compton Scattering (DVCS)  - σ ~ A4/3

➡ F2, FL for various A and impact parameter dependence

• Interaction of fast probes with gluonic medium?
➡ Hadronization, Fragmentation
➡ Energy loss (charm, bottom!)

16
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RHIC Au+Au @ 200 GeV/n
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Interaction of fast probes with gluonic medium
• nDIS:

➡ Clean measurement in ‘cold’ nuclear 
matter

➡ Suppression of high-pT hadrons analogous 
to, but weaker than at RHIC

17

• Fundamental question:
• When do partons get colour neutralized?

Parton energy loss vs. (pre)hadron 
absorption

Energy transfer in lab rest frame:
EIC: 10 < ν < 1600 GeV    

HERMES: 2-25 GeV

Zh = Eh/ν
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Charm measurements at an EIC

18

• EIC: allows multi-differential measurements of heavy flavour

• Covers and extends energy range of SLAC, EMC, HERA, and JLAB allowing for 
the study of wide range of formation lengths

 (GeV/c)Tp
0 2 4 6 8 10

A
A

R

1

0.1

/dy = 1000gDVGL Rad dN
/fm 2= 10 GeVqBDMPS c+b 

DGLV Rad+EL 
van Hees Elastic
DGLV charm Rad+EL 
Collisional dissociation

STAR Au+Au 0-5% (PRL98, 192301)
PHENIX Au+Au  0-10% (PRL96,032301)

(e++e-)/2
NN=200 GeV

hadrons

Charm also suppressed at RHIC - above and beyond model predictions
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Key Measurements in e+A
• Momentum distribution of gluons G(x,Q2)

➡ Extract via scaling violation in F2: δF2/δlnQ2

➡ Direct measurement: FL ~ xG(x,Q2) (requires √s scan)
➡ 2+1 jet rates 
➡ Inelastic vector meson production (e.g. J/ψ)
➡ Diffractive vector meson production ~ [xG(x,Q2)]2

• Space-time distributions of gluons in matter
➡ Exclusive final states (e.g. vector meson production ρ, J/ψ)
➡ Deep Virtual Compton Scattering (DVCS)  - σ ~ A4/3

➡ F2, FL for various A and impact parameter dependence
• Interaction of fast probes with gluonic medium?

➡ Hadronization, Fragmentation
➡ Energy loss (charm!)

• Role of colour neutral excitations (Pomerons)
➡ Diffractive cross-section σdiff/σtot (HERA/ep: 10% , EIC/eA: 30%?)      
➡ Diffractive structure functions and vector meson production
➡ Abundance and distribution of rapidity gaps

19
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Role of colour-neutral (Pomeron) excitations

20

?

dσ

dt
|t=0(γ∗A→MXA) ∝ α2[GA(x, Q2)]2



Matt Lamont - EINN ’09: macl@bnl.gov

Role of colour-neutral (Pomeron) excitations

20

• HERA/ep: 15% of all events are hard diffractive

?

dσ

dt
|t=0(γ∗A→MXA) ∝ α2[GA(x, Q2)]2



Matt Lamont - EINN ’09: macl@bnl.gov

Role of colour-neutral (Pomeron) excitations

20

• HERA/ep: 15% of all events are hard diffractive
• Diffractive cross-section σdiff/σtot in e+A ?

?

dσ

dt
|t=0(γ∗A→MXA) ∝ α2[GA(x, Q2)]2



Matt Lamont - EINN ’09: macl@bnl.gov

Role of colour-neutral (Pomeron) excitations

20

• HERA/ep: 15% of all events are hard diffractive
• Diffractive cross-section σdiff/σtot in e+A ?

• Predictions: ~25-40%?      

?

Curves: Kugeratski, Goncalves, 
Navarra, EPJ C46, 413dσ
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• Diffractive structure functions
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Role of colour-neutral (Pomeron) excitations

20

xIP = mom. fraction of 
pomeron w.r.t. hadron

• HERA/ep: 15% of all events are hard diffractive
• Diffractive cross-section σdiff/σtot in e+A ?

• Predictions: ~25-40%?      
• Look inside the “Pomeron”

• Diffractive structure functions

• Distinguish between linear evolution and saturation models

?

Curves: Kugeratski, Goncalves, 
Navarra, EPJ C46, 413dσ

dt
|t=0(γ∗A→MXA) ∝ α2[GA(x, Q2)]2
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How to measure coherent diffraction in e+A ?

21

dσ

dt
|t=0(γ∗A→MXA) ∝ α2[GA(x, Q2)]2

A )

Roman Pot

Silicon detector

Bellows

B )

C )

Proton beam line

Z-Y view X-Y view

Figure 2: Schematic layout of a station (like S4, S5 or S6). A) During beam filling and ramping,
the detector planes (labelled “Silicon detector”) are kept outside of the pots and the pots are
placed far from the beam. The zig-zag lines indicate the bellows. B) The detector planes are
inside the pots and the pots are being moved towards the beam. Note the elliptical profile of
the fronts of the pots (X-Y view), which matches the cutout of the detector planes. C) When
taking data, the pots are fully inserted and the detector planes in the upper and lower half of
the station partially overlap in the transverse plane.

21
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How to measure coherent diffraction in e+A ?

• Coherent diffraction == low t

• Can measure the nucleus if it is 
separated from the beam in Si (Roman 
Pot) “beamline” detectors

➡ pTmin ~ pAθmin

‣ For beam energies = 100 GeV/n 
and θmin = 0.08 mrad:
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How to measure coherent diffraction in e+A ?

• Coherent diffraction == low t

• Can measure the nucleus if it is 
separated from the beam in Si (Roman 
Pot) “beamline” detectors

➡ pTmin ~ pAθmin

‣ For beam energies = 100 GeV/n 
and θmin = 0.08 mrad:

• These are large momentum kicks, >> 
the binding energy (~ 8 MeV)

21

species (A) pTmin (GeV/c)

d (2) 0.02

Si (28) 0.22

Cu (64) 0.51

In (115) 0.92

Au (197) 1.58

U (238) 1.9

dσ

dt
|t=0(γ∗A→MXA) ∝ α2[GA(x, Q2)]2
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• Coherent diffraction == low t

• Can measure the nucleus if it is 
separated from the beam in Si (Roman 
Pot) “beamline” detectors

➡ pTmin ~ pAθmin

‣ For beam energies = 100 GeV/n 
and θmin = 0.08 mrad:

• These are large momentum kicks, >> 
the binding energy (~ 8 MeV)
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species (A) pTmin (GeV/c)

d (2) 0.02

Si (28) 0.22

Cu (64) 0.51

In (115) 0.92

Au (197) 1.58

U (238) 1.9

For large A, nucleus cannot be separated from beam 
without breaking up

dσ

dt
|t=0(γ∗A→MXA) ∝ α2[GA(x, Q2)]2
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How else to measure diffraction in e+A?

22

Method used at HERA:

activity in the proton direction

Large Rapidity Gap Method:

In diffractive events, a large gap 
in rapidity occurs between 
outgoing p and final state 

particles 
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How else to measure diffraction in e+A?

22

Method used at HERA:
Large Rapidity Gap Method:

In diffractive events, a large gap 
in rapidity occurs between 
outgoing p and final state 

particles 

• At HERA: Δη ~7 ⇒ hadronization reduces this to ~2.5

• Pros
➡ Lots of statistics

• Cons
➡ Sensitive to detector acceptance
➡ No information on t

Diffractive 
events
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How else to measure diffraction in e+A?

22

Method used at HERA:
Large Rapidity Gap Method:

In diffractive events, a large gap 
in rapidity occurs between 
outgoing p and final state 

particles 

• At HERA: Δη ~7 ⇒ hadronization reduces this to ~2.5

• Pros
➡ Lots of statistics

• Cons
➡ Sensitive to detector acceptance
➡ No information on t

Can this method 
be used at an EIC?

Diffractive 
events
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Large rapidity gaps at an EIC

23
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Large rapidity gaps at an EIC

• Method:

➡ Use RAPGAP in diffractive 
and DIS modes to simulate e
+p  collisions at EIC 
energies

➡ Clear difference between 
DIS and Diffractive modes 
in “most forward particle in 
event” distributions

‣ Little change in distributions 
with increasing energy 

23

rapidity
-8 -6 -4 -2 0 2 4 6 8

0

0.02

0.04

0.06

0.08

0.1

e+p: RAPGAP: MFP in Event
2+100 GeV - DIS
5+100 GeV - DIS
10+100 GeV - DIS
20+100 GeV - DIS
30+100 GeV - DIS
2+100 GeV - Diff
5+100 GeV - Diff
10+100 GeV - Diff
20+100 GeV - Diff
30+100 GeV - Diff

DIS

Diffractive

rapidity



Matt Lamont - EINN ’09: macl@bnl.gov

Large rapidity gaps at an EIC

• Method:

➡ Use RAPGAP in diffractive 
and DIS modes to simulate e
+p  collisions at EIC 
energies

➡ Clear difference between 
DIS and Diffractive modes 
in “most forward particle in 
event” distributions

‣ Little change in distributions 
with increasing energy 

➡ Can reproduce “ZEUS-like” 
plots
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EW Unification at HERA

• From DIS at HERA:

➡ At small-medium Q2, σ
(NC) >> σ(CC)

➡ For Q2 > MZ2 and MW2, σ
(NC) ~ σ(CC)

‣ EW Unification 

• Already a textbook figure ...

24

EW 
Unification
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Matter at low-x: A truly universal regime?

25
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What about on the parton scale?

• Small-x running-coupling 
BFKL QCD evolution predicts:

• QS approaches universal 
behaviour for all hadrons and 
nuclei

• No dependence on A!!

• Not only functional form f(QS) 
universal, but even QS itself 
becomes universal
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Matter at low-x: A truly universal regime?

Radical View: 
➡Nuclei and all hadrons have a component of their wave function 

with the same behaviour
➡ This is a conjecture! Needs to be tested
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Requirements for an Electron Ion Collider
Well mapped in e+p
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Requirements for an Electron Ion Collider
Well mapped in e+p

Not so for ℓ+A (ν+A)
• many with small A
• low statistics
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Requirements for an Electron Ion Collider
Well mapped in e+p

Electron Ion Collider:

• L(EIC) > 100 × L(HERA)
• Electrons
- Ee = 3 - 20 GeV
- polarized
• Hadron Beams
- EA = 100 GeV
- A   = p → U
- polarized p & light ions

Not so for ℓ+A (ν+A)
• many with small A
• low statistics
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What is happening now - e+A notes
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In the process of composing eA “EIC notes” linking theory, 
experiment and simulations on distinct topics
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What is happening now - e+A notes
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Diffraction Hadronization Jets

In the process of composing eA “EIC notes” linking theory, 
experiment and simulations on distinct topics



Matt Lamont - EINN ’09: macl@bnl.gov 28

Detector design

Collision 
point

Backward 
tracking

Forward 
tracking
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Plots courtesy of Will Foreman and 
Anders Kirleis, freshmen at SUNY-SB

Detector design
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Plots courtesy of Will Foreman and 
Anders Kirleis, freshmen at SUNY-SB
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Summary
An EIC presents a unique opportunity in high energy nuclear physics 
and precision QCD physics

30

e+A Polarized e+p
 Study the Physics of Strong Colour Fields

• Establish (or not) the existence of the saturation 
regime 

• Explore non-linear QCD
• Measure momentum & space-time of glue

 Study the nature of colour singlet excitations 
(Pomerons)

 Test and study the limits of universality (eA vs. pA)

 Precisely image the sea-
quarks and gluons to 
determine the spin, flavour 
and spatial structure of the 
nucleon

• Embraced by NSAC in Long Range Plan
• Recommendation of $30M for R&D over next 5 years

• EIC Long Term Goal - start construction in next decade
• Possibility of Staged Approach

• Cheap (no civil construction costs)
• Early time-scale for realisation (operation by ~2016)
• Cons - lower energy and luminosity than full design


